Goto

Collaborating Authors

 Wadi al Hayaa District


Adaptive Fusion of Multi-view Remote Sensing data for Optimal Sub-field Crop Yield Prediction

arXiv.org Artificial Intelligence

Accurate crop yield prediction is of utmost importance for informed decision-making in agriculture, aiding farmers, and industry stakeholders. However, this task is complex and depends on multiple factors, such as environmental conditions, soil properties, and management practices. Combining heterogeneous data views poses a fusion challenge, like identifying the view-specific contribution to the predictive task. We present a novel multi-view learning approach to predict crop yield for different crops (soybean, wheat, rapeseed) and regions (Argentina, Uruguay, and Germany). Our multi-view input data includes multi-spectral optical images from Sentinel-2 satellites and weather data as dynamic features during the crop growing season, complemented by static features like soil properties and topographic information. To effectively fuse the data, we introduce a Multi-view Gated Fusion (MVGF) model, comprising dedicated view-encoders and a Gated Unit (GU) module. The view-encoders handle the heterogeneity of data sources with varying temporal resolutions by learning a view-specific representation. These representations are adaptively fused via a weighted sum. The fusion weights are computed for each sample by the GU using a concatenation of the view-representations. The MVGF model is trained at sub-field level with 10 m resolution pixels. Our evaluations show that the MVGF outperforms conventional models on the same task, achieving the best results by incorporating all the data sources, unlike the usual fusion results in the literature. For Argentina, the MVGF model achieves an R2 value of 0.68 at sub-field yield prediction, while at field level evaluation (comparing field averages), it reaches around 0.80 across different countries. The GU module learned different weights based on the country and crop-type, aligning with the variable significance of each data source to the prediction task.


Applications of Machine Learning in Biopharmaceutical Process Development and Manufacturing: Current Trends, Challenges, and Opportunities

arXiv.org Artificial Intelligence

While machine learning (ML) has made significant contributions to the biopharmaceutical field, its applications are still in the early stages in terms of providing direct support for quality-by-design based development and manufacturing of biopharmaceuticals, hindering the enormous potential for bioprocesses automation from their development to manufacturing. However, the adoption of ML-based models instead of conventional multivariate data analysis methods is significantly increasing due to the accumulation of large-scale production data. This trend is primarily driven by the real-time monitoring of process variables and quality attributes of biopharmaceutical products through the implementation of advanced process analytical technologies. Given the complexity and multidimensionality of a bioproduct design, bioprocess development, and product manufacturing data, ML-based approaches are increasingly being employed to achieve accurate, flexible, and high-performing predictive models to address the problems of analytics, monitoring, and control within the biopharma field. This paper aims to provide a comprehensive review of the current applications of ML solutions in a bioproduct design, monitoring, control, and optimisation of upstream, downstream, and product formulation processes. Finally, this paper thoroughly discusses the main challenges related to the bioprocesses themselves, process data, and the use of machine learning models in biopharmaceutical process development and manufacturing. Moreover, it offers further insights into the adoption of innovative machine learning methods and novel trends in the development of new digital biopharma solutions.


Instruct-NeuralTalker: Editing Audio-Driven Talking Radiance Fields with Instructions

arXiv.org Artificial Intelligence

Recent neural talking radiance field methods have shown great success in photorealistic audio-driven talking face synthesis. In this paper, we propose a novel interactive framework that utilizes human instructions to edit such implicit neural representations to achieve real-time personalized talking face generation. Given a short speech video, we first build an efficient talking radiance field, and then apply the latest conditional diffusion model for image editing based on the given instructions and guiding implicit representation optimization towards the editing target. To ensure audio-lip synchronization during the editing process, we propose an iterative dataset updating strategy and utilize a lip-edge loss to constrain changes in the lip region. We also introduce a lightweight refinement network for complementing image details and achieving controllable detail generation in the final rendered image. Our method also enables real-time rendering at up to 30FPS on consumer hardware. Multiple metrics and user verification show that our approach provides a significant improvement in rendering quality compared to state-of-the-art methods.


Multi-Task Self-Supervised Learning for Image Segmentation Task

arXiv.org Artificial Intelligence

Thanks to breakthroughs in AI and Deep learning methodology, Computer vision techniques are rapidly improving. Most computer vision applications require sophisticated image segmentation to comprehend what is image and to make an analysis of each section easier. Training deep learning networks for semantic segmentation required a large amount of annotated data, which presents a major challenge in practice as it is expensive and labor-intensive to produce such data. The paper presents 1. Self-supervised techniques to boost semantic segmentation performance using multi-task learning with Depth prediction and Surface Normalization . 2. Performance evaluation of the different types of weighing techniques (UW, Nash-MTL) used for Multi-task learning. NY2D dataset was used for performance evaluation. According to our evaluation, the Nash-MTL method outperforms single task learning(Semantic Segmentation).


Continuous Human Action Recognition for Human-Machine Interaction: A Review

arXiv.org Artificial Intelligence

With advances in data-driven machine learning research, a wide variety of prediction models have been proposed to capture spatio-temporal features for the analysis of video streams. Recognising actions and detecting action transitions within an input video are challenging but necessary tasks for applications that require real-time human-machine interaction. By reviewing a large body of recent related work in the literature, we thoroughly analyse, explain and compare action segmentation methods and provide details on the feature extraction and learning strategies that are used on most state-of-the-art methods. We cover the impact of the performance of object detection and tracking techniques on human action segmentation methodologies. We investigate the application of such models to real-world scenarios and discuss several limitations and key research directions towards improving interpretability, generalisation, optimisation and deployment.


Al Qaeda leader killed by drone strike in Libya identified by Pentagon

FOX News

Military officials say no civilians appear to be injured in the strike. A U.S. drone strike killed a "high ranking" official in the Al Qaeda in the Islamic Maghreb terror cell in Libya on Saturday, the Pentagon disclosed Wednesday. Musa Abu Dawud was one of two AQIM terrorists killed in the airstrike in southwest Libya near the city of Ubari in the Sahara desert. "Dawud trained AQIM recruits in Libya for attack operations in the region. He provided critical logistics support, funding and weapons to AQIM, enabling the terrorist group to threaten and attack U.S. and Western interests in the region," U.S. military's Africa Command said in a statement.